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numbers was performed by [13, 25]. More recently, through
the use of advanced numerical techniques (e.g., compactIn this paper a finite difference method for computing the solu-

tions of the incompressible Navier–Stokes equations for flow about high order difference stencils and exponentially stretched
a circular cylinder in two dimensions is presented. A stream grids), solutions have been obtained for higher Reynolds
function/vorticity formulation of the equation is used and the numer- numbers [14, 15, 7, 6]. This problem has also been the focus
ical method incorporates recent developments in the computation

of mathematical and analytical modeling; for example, seeof vorticity boundary conditions as well as far field boundary condi-
Sarpkaya [23, 22].tions. Three schemes are described, one of second order accuracy,

one of fourth order accuracy, and a hybrid method which is second Our interest in obtaining accurate, fully resolved solu-
order accurate in the computation of the vorticity transport and tions to the Navier–Stokes equations for flow about a circu-
fourth order accurate in the determination of the stream function. lar cylinder was motivated by our work on boundary layer
Fully resolved solutions for flow past a cylinder have been computed

models [4]. While existing finite difference methods couldover a range of Reynolds numbers from 1000 to 9500. Comparisons
have been used to provide such solutions, they do notare made between the results obtained with methods of different

orders of accuracy as well as of the effectiveness of the vorticity incorporate some recent results having to do with the treat-
and far field boundary conditions. Q 1996 Academic Press, Inc. ment of infinite boundary conditions (using essentially do-

main decomposition procedures) [2] and vorticity bound-
ary conditions [3]. This paper describes a finite difference
method which incorporates these results.1. INTRODUCTION

The resulting method is an explicit finite difference
method of second order (or fourth order) accuracy in spaceThe purpose of this paper is to describe a finite difference

method for computing two dimensional viscous incom- and of fourth order accuracy in time. The vorticity bound-
ary conditions that are presented allow one to easily obtainpressible flow past a circular cylinder and to present the

results of computations performed with this method. The high accuracy in both the interior and boundary values of
vorticity. This formulation of the boundary conditions alsocomputations consist of determining fully resolved, short

time solutions of an impulsively started cylinder up to allows one to implement time dependent boundary condi-
tions without any loss of time accuracy.Reynolds number 9500.

Flow about a circular cylinder is widely used as a test The specific problem that we consider in this paper is the
computation of the viscous flow about a circular cylinder asproblem because it exhibits features of unsteady viscous

flow past bluff bodies—especially unsteady vortex shed- it is accelerated from rest to unit velocity. The length of
time over which we compute the solution to this problemding. Moreover, there are experimental data [28, 5, 16]

and the simple geometry makes it the problem of choice is what might be considered short time—a time interval
in which the cylinder has translated one or two diameters.for testing numerical methods and mathematical modeling

procedures. For example, flow about a circular cylinder However, during this time interval the solutions reveal a
rather complex shedding structure (particularly at highwas used as a test problem by Chorin [9] to introduce the

vortex blob method and has served as test problems for Reynolds number) and thus provide useful solutions for
investigating the process of boundary layer separation phe-refinements of the technique [8, 24, 27]. With regard to

finite difference methods, early work at modest Reynolds nomena.
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In the solutions we compute the vorticity in the fluid is associated with a uniform (Cartesian) velocity at infinity
(Uy , 0); i.e.,confined to a small region about the cylinder and we need

only use a grid which extends one or two cylinder radii
downstream to capture its evolution. Furthermore, the use

(uy(r, u), vy(r, u)) 5 SUy S1 2
r2

a

r2D cos(u),of infinite-domain boundary conditions allows us to use
the same grid for the computation of the stream function.
The limited extent of the computational grid allows us the

2Uy S1 1
r2

a

r2D sin(u)D.luxury of having a grid which is uniform in each direction,
both normal and tangent to the cylinder. This is particularly
important for the problem considered here in which the The non-dimensionalization is based on the cylinder diam-
boundary layer separates and enters the fluid. In this case eter 2ra and the velocity at infinity; Re 5 2raUy/n. b(t) is
vorticity gradients are not aligned with the cylinder surface a function such that b(t) 5 0 for t , 0 and b(t) 5 1 at
and a grid which has good resolution in both directions some time t $ 0. (If b(t) 5 1 for t 5 0 then this is the
is needed. problem of an impulsively started cylinder.)

In the first section we shall describe the specific problem The initial and boundary conditions for this problem are
we are solving and provide the relevant equations. In the
second section we give the details of the numerical method. g(r, u, 0) 5 0 ra # r # y
The latter will include a description of the procedures for

0 # u # 2f (4)discretization of the equations, for treating the infinite
computational domain, for implementing the vorticity (u(r, u, t), v(r, u, t))
boundary conditions and the procedures used for time

5 b(t)(uy(r, u), vy(r, u)) r R ydiscretization. In the remaining sections we provide numer-
ical results and discuss issues related to initial conditions 0 # u # 2f (5)
and other computational aspects.

(u(r, u, t), v(r, u, t))

2. PROBLEM DESCRIPTION AND EQUATIONS OF 5 (0, 0) r 5 ra
MOTION

0 # u # 2f. (6)
The problem we are considering is the determination of

The boundary conditions on the velocity, (5) and (6),the two dimensional motion of the fluid which arises when
will be satisfied if the boundary conditions on the streama circular cylinder is accelerated from rest to a unit velocity.
function C satisfyWe carry out the computation in a coordinate frame fixed

to the cylinder, and so we formulate the problem as one
C(r, u, 0) 5 0 r R y 0 # u # 2f (7)of determining the motion of the fluid about a stationary

cylinder with a variation in the velocity at infinity.
C(r, u) 5 0 r 5 ra 0 # u # 2f (8)

The Navier–Stokes equations for an incompressible fluid
of constant density are used to describe the fluid motion. ­C

­r
(r, u) 5 2b(t)vy(r, u) r 5 ra 0 # u # 2f. (9)

When non-dimensionalized and expressed in polar coordi-
nates, the vorticity stream function formulation of the Na-
vier–Stokes equations becomes The presence of the diffusive term in (1) implies that

instantaneously after the fluid motion is started the associ-
ated vorticity has a finite non-zero value at every point­g

­t
1 Su,

v
rD ? S­g

­r
,
­g
­u
D5

1
Re S1

r
­

­r Sr
­g
­rD1

1
r2

­2g
­u2D (1) in the domain. However, for short times, the vorticity is

concentrated in a region close to the cylinder and is expo-
nentially small away from this region. We therefore sim-u 5

1
r

­C

­u
1 b(t)uy(r, u) v 5 2

­C

­r
1 b(t)vy(r, u) (2)

plify our computational task by neglecting this exponen-
tially small amount of vorticity and only determine the
values of the vorticity in the annular region about the1

r
­

­r Sr
­C

­r D1
1
r2

­2C

­u2 5 2g (3)
cylinder—the region described by ra # r # rb and 0 #
u # 2f. The accuracy of this procedure is checked by
comparing the solutions obtained with two different valuesfor r $ ra and 0 # u # 2f. Here (u, v) are the radial and

tangential components of the velocity, respectively, g is of rb . As will be seen from the computational results, for
our particular choice of rb the errors incurred are indeedthe vorticity, and C is the stream function. The velocity

field (uy(r, u), vy(r, u)) corresponds to the potential flow negligible.
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While we ignore the vorticity outside of the region r direction and dr in the radial direction. We will designate
the values of the vorticity on the computational grid as5 rb we do not impose the boundary condition on the

stream function (7) at r 5 rb . Making such an approxima- gi, j 5 g(idu, ra 1 jdr), with i 5 1 ... M and j 5 1 ... N 1
tion leads to large errors, and, in fact, a significant

1, M 5
2f
du

and N 5 (rb 2 ra)/dr. The values for the velocitycomponent of this paper is to describe how one can
effectively implement the correct ‘‘infinite’’ boundary and stream function are also labeled similarly.
condition on C.

3.2. Finite Difference Approximations

In the computation of this problem we chose to use3. NUMERICAL METHOD
‘‘standard’’ centered difference approximations. This re-
quires some explantion, as centered schemes can have un-The equations for vorticity transport (1) are of the
desirable properties, and this has meant that there is aconvection–diffusion type, while the velocity field is deter-
general consensus that upwind or non-centered schemesmined by evaluating derivatives of a solution of Poisson’s
are the methods of choice for incompressible flowequation (2), (3). The basis for our discretization tech-
problems.nique is the method of finite differences. Our choice of

There are essentially two problems which have to dothis type of discretization is motivated by the fact that
with the use of centered schemes. The first problem hasfor the simple geometry associated with this problem
to do with the stability (in time) of centered differencehigh accurate difference formulas for the convection and
approximations for the convection terms. Without a dissi-diffusion equation can be easily constructed. One can
pative term in the equation of motion (i.e., when the viscos-also utilize the discrete fast Fourier transform to obtain
ity equals zero (Re 5 y)), certain commonly used explicitefficient solutions of the Poisson equation which deter-
time differencing procedures such as forward Euler andmines C. In order to implement a finite difference method
Huen’s method (a second order Runge–Kutta method)one must
are unstable. This problem can be overcome by using a

(i) Select a finite difference grid. time differencing method whose region of stability contains
(ii) Select a finite difference discretization for the con- some portion of the imaginary axis in the complex plane.

vection and diffusion of the vorticity (1). Two Runge–Kutta methods which satisfy this condition are
the standard third and fourth order Runge–Kutta methods(iii) Select a discretization (and corresponding solu-
(see [1]). We chose to use fourth order Runge–Kutta—itstion procedure) for the Poisson equation (3). (We shall
larger stability region makes the computation more effi-use the boundary conditions (7) and (8) to determine
cient.C; the other boundary condition, (9) will be satisfied

The second problem has to do with the fact that centeredthrough an appropriate choice of the boundary vortic-
difference approximations create spatially oscillating re-ity values.)
sults in the presence of steep gradients. However, for vis-

(iv) Determine a technique such that the computation
cous problems, if one increases the resolution while keep-

of C while being performed on a finite domain, approxi-
ing the Reynolds number constant, then this problem

mates the solution on the infinite domain.
disappears. For those familiar with the cell Reynolds num-

(v) Translate the velocity boundary conditions (or ber concept [20], the disappearance of oscillations is coinci-
equivalently the stream function boundary condition (9)) dent with a decrease in the cell Reynolds number. Since
into a boundary condition for the vorticity. (The boundary we are interested in completely resolving the fluid motion,
vorticity needs to be determined in order to close the and, in particular, the viscous profiles present in the prob-
convection diffusion equations for the vorticity transport.) lem, we shall be using a sufficiently fine grid for which

these oscillations do not occur. It is for this reason that(vi) Select an appropriate time-stepping strategy.
we see no need for, and in fact would not want to use, an

In the following sections we describe how we have ad- upwind scheme. As is revealed by a consideration of the
dressed each of these problems. truncation errors associated with centered versus non-cen-

tered differentiation formulas [1], for a given order of
discretization, upwind schemes have a larger truncation
error than centered schemes.3.1. Grid

At the interior points we used
The grid used for our discretization is a polar grid which

extends from the surface of the cylinder ra to a distance ­f
­x

P D0
h f 5

f (x 1 h) 2 f (x 2 h)
2hrb . We will assume a uniform mesh spacing du in the u
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for second order difference approximations to the deriva- transport of vorticity given by Eq. (1) consists of solving
the coupled set of ordinary differential equationstives occurring in the convective terms of (1) and

­f
­x

P D̃0
h f dgi,j

dt
5 2Sui, j ,

vi, j

r D ? (D0
rgi, j , D0

ugi, j)

(11)
5

2f (x 1 2h) 1 8 f (x 1 h) 2 8 f (x 2 h) 1 f (x 2 2h)
12h 1

1
Re

sD1
r D2

r 1
1
r

D0
r 1

1
r2 D1

u D2
u D gi, j ,

for the fourth order approximations. Here h is the mesh
width, du or dr. where the difference operators were modified near the

The Laplace operator in (1) and (3) was discretized using boundaries as described above. The values for the velocity
standard second and fourth order differencing. The second (11) are determined by using centered difference approxi-
order discretization used was mations of the stream function,

Dg P D1
r D2

r g 1
1
r

D0
rg 1

1
r2 D1

u D2
u g (10)

ui, j 5
1
r

D0
uCi, j vi, j 5 2D0

rCi, j . (12)

where D1 and D2 are the forward and backward divided
difference operators. The differencing for the fourth order As in the equation for transport of vorticity, the appro-
approximation consisted of replacing the second order dif- priate one-side stencils were used for the fourth order
ference operators in (10) by fourth order accurate differ- discretization next to boundaries. The values for the stream
ence operators. Also, in the fourth order approximation, function are determined by the procedure described in the
fourth order ‘‘one-sided’’ difference operators were used next section.
near the boundary. (The formulas can be found in [1].)

At the cylinder surface, the values of the vorticity are 3.3. Computation of the Stream Function
explicitly determined (by a procedure described below),

At a fixed time, for a given vorticity distribution, theand so are used to close the finite difference approxima-
velocity field is computed by determining the stream func-tions at the cylinder surface. At the outer boundary of the
tion and then differentiating the result. The problem whichcomputational domain (the points with r 5 rb) we used
determines the stream function from the vorticity is the fol-second order upwind differencing in the approximation of
lowing:the convective terms in the equation. If the fluid flow is

entering the computational region (thus necessitating the
convection of vorticity from outside to inside the computa-
tional region) the value of the vorticity convected in from DC 5

1
r

­

­r Sr
­C

­r D1
1
r2

­2C

­u2 5 2g (13)
the exterior of the computational domain is taken to be
identically zero. For the diffusive term at r 5 rb , Neumann C(r, u) 5 0 r 5 ra; C(r, u) 5 Cy(r, u) r R y

(14)boundary conditions were used to close the difference ap-
0 # u # 2f.proximation. In essence, the outflow boundary conditions

we employed allowed for convection transport of the vor-
ticity out of the domain but not diffusive transport. We Here Cy is the boundary condition at infinity which
used these boundary conditions for both the fourth and includes a specification of the net circulation k. For
second order approximations. Our primary goal in select- our problem the net circulation is zero and so we use
ing these boundary conditions was to ensure that the out- Cy(r, u) 5 0. If we had included a fixed amount of circula-
flow conditions on the difference approximations did not tion k (i.e., flow about a rotating cylinder) then we would
give rise to oscillations which would contaminate the inte- have used Cy(r, u) 5 (k/2f) log(r).
rior solution values. In the time over which our solutions Thus, the problem determining C is a Poisson equation
were computed the vorticity was completely confined to in an infinite domain with Dirichlet boundary conditions.
the computational domain and so these boundary condi-
tions did not influence the accuracy of the solution in the

3.3.1. The Treatment of The Infinite Domain
interior. (As will be seen in the computational results, these
simple outflow boundary conditions worked very well.) The method we employ is a slight modification of the

procedure described in [2]. In order to obtain an approxi-If we leave the time variable continuous (the method of
lines approach) then the numerical approximation for the mation to (13) which incorporates the boundary conditions
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at infinity, we use the following form for the stream continuous at r 5 rb and (18) is a requirement that
the normal derivative of the approximate solution befunction
continuous at r 5 rb.

The solution to equations (15) and (16) is completely
determined given any specification of the boundary valuesC P 5(Cg)i, j 0 # ui # 2f ra # rj # rb

Cf (r, u) 1 CH(r, u) 0 # u # 2f r $ rb . of Cg and Cf at the outer computational boundary. How-
ever, these values cannot be chosen arbitrarily, since they
must be chosen in such a way that Eq. (18) is satisfied. InHere (Cg)i, j is the solution of the discrete Poisson equation
the Appendix we show how these considerations lead to(DhCg)i, j 5 gi, j in the annulus ra # rj # rb . CH(r, u) is a
a set of linear equations for the desired boundary values,specified harmonic function taking the prescribed bound-
and give an efficient procedure for solving these equationsary conditions at infinity (including a prescribed amount
which utilizes the discrete Fourier Transform.of net circulation). The function cf is a finite Fourier series

solution to Laplace’s equation in the region r $ rb :
3.4. Vorticity Boundary Conditions

One of the principal difficulties which is encounteredCf (r, u) 5 Ok5M/2

k52M/211
S r

ra
D2uk u

akeiku.
when using the vorticity formulation of the Navier–Stokes
equations is the determination of the vorticity at solid
boundaries in the domain. This difficulty arises becauseA property of this approximation is that it is harmonic
when one transforms the velocity–pressure formulationfor r . rb and thus the representation is valid only if the
into the vorticity form, one does not obtain an explicitvorticity is contained within the region r , rb . In our
expression for the vorticity on the boundary. However, itcomputations this requirement is satisfied. Another prop-
is clear that the vorticity values on the boundary shoulderty of this approximation is that it automatically satisfies
be determined so that as the interior vorticity evolves usingthe required boundary condition at infinity.
these values, the induced velocity field will satisfy the ap-The computational task is to determine the grid values
propriate velocity boundary conditions. The main difficultyCg and the coefficients ak in the Fourier series component
is how to achieve this goal for a particular discretizationCf so that the resulting function approximates the solution
and boundary configuration. In our approach we find theto (13), (14). We therefore require the approximation to
set of equations for the boundary vorticity which lead tosatisfy
a scheme with the desired properties. This system of equa-
tions is linear and can be interpreted as the discretization of(DhCg )i, j 5 2gi, j
an integral equation for the vorticity boundary values—see

i 5 1 ... M, j 5 2 ... N (15) [3]. In this section we will show how the system of equations
is constructed and the solutions are obtained. The resulting(Cg )i,1 5 0
method evolves the vorticity in such a way that at every

i 5 1 ... M (16) time step the induced velocity field satisfies the velocity
boundary conditions to the order of accuracy of the time-(Cg )i,N11 5 Cf (ui , rb) 1 CH (ui , rb)
discretization procedure. The method we construct does

i 5 1 ... M (17) not require that an implicit time-stepping scheme be used
to evolve the interior vorticity.

Dr(Cg )i,N11 5
­Cf

­r
(ui , rb) 1

­CH (ui , rb)
­r There are other families of vorticity boundary conditions

which allow one to determine boundary vorticity. In the
i 5 1 ... M. (18) finite difference context, perhaps the most well known are

those given by Thom [26]. (See Peyret and Taylor [17] for
references and a general discussion of the technique and itsHere Dh is either a second or fourth order finite difference

approximation to D, such as that described by (10) in Sec- refinements.) This type of boundary condition has recently
been analyzed by Hou and Wetton [12] and shown to yieldtion 2.2. Dr is either a second or fourth order one sided

difference approximation to the radial derivative. second order accurate solutions. Since we are determining
converged solutions we expect that either technique (i.e.,The first two equations, (15) and (16), are finite differ-

ence approximations of (13) and (14) in the annulus the method presented here, or that based on Thom’s ap-
proach) would work well. An advantage of the approachra # r # rb . For r $ rb we need not require that

DCf 5 0 since this is automatically satisfied (the boundary presented here is that it allows one to easily change the
order of spatial accuracy and incorporate time-dependentconditions at infinity are also satisfied). The condition

(17) is a requirement that the approximate solution be boundary conditions.
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Consider the ordinary differential equations which arise The computational task is to determine the boundary
velocity, vbdry , so that when one solves the ordinary differ-after discretization in space,
ential equations (20) for the evolution of vint the constraint
imposed by the second velocity boundary condition (21)dgi, j

dt
5 2 Sui, j ,

vi, j

r D · (D0
r gi, j , D0

u gi, j ) is satisfied.
To guarantee that the constraint (21) is satisfied, we

assume that it is satisfied at t 5 0, i.e.,1
1

Re SD1
r D2

r 1
1
r

D0
r 1

1
r2 D1

u D2
u D gi, j, (19)

i 5 1 ... M j 5 2 ... N. (DrG[vint ])i,1 5 2b(0)vy(ra , ui ) i 5 1 ... M, (22)

There is one differential equation for each of the interior and require that the time-derivative of the constraint
values of vorticity but there are no differential equations vanish:
for the boundary vorticity (when j 5 1). However, the
boundary vorticity values are included in the set of equa- d

dt
(Dr G[vint ])i,1 5 2b9(t)vy(ra , ui ) i 5 1 ... M. (23)tions (19) since they enter into the difference stencils oc-

curring on the right hand side. We can write the system
of differential equations (19) in the form

We now use the condition (23) along with (20) to elimi-
nate the boundary vorticity in Eqs. (20); i.e., we can explic-
itly determine the boundary vorticity. We have

dvint

dt
5 L(vint) 1 L(vbdry ). (20)

d
dt

(DrG[vint ])i,1 5 2b9(t)vy(ra , ui )Here vint represents the interior values of vorticity and
vbdry the boundary values of vorticity. L is the operator

⇒ SDrG Fdvint

dt GD
i,1

5 2b9(t)vy(ra , ui )
L( · ) 5 2 Sui, j ,

vi, j

r D · (D0
r[ · ], D0

u [ · ])
⇒ (DrG[L(vint ) 1 L(vbdry)])i,1 5 2b9(t)vy(ra , ui )

⇒ (DrG[L(vbdry)])i,1 5 2(DrG[L(vint )])i,11
1

Re SD1
r D2

r 1
1
r

D0
r 1

1
r2 D1

u D2
u D [ · ].

2 b9(t)vy(ra , ui ).

Due to the presence of vbdry in (20) these equations are
Thus we have an equation which determines the bound-underdetermined. We use the velocity boundary condi-

ary vorticity as a function of the interior vorticity:tions to remove this indeterminacy.
Let G be the operator which computes the stream func-

(DrG[L(vbdry)])i,1 5 2(DrG[L(vint)])i,1
(24)

tion from the vorticity distribution (i.e., the operator C 5
G[vint ] which is defined by the procedure described in 2b9(t)vy(ra , ui ).
Section (2.3)). Since the construction of the stream function
utilizes boundary condition (8) the computed velocity field If we express the relationship defined by (24) as vbdry 5
automatically satisfies the normal velocity boundary condi- H(vint , t) then the ordinary differential equations (20)
tion (5). What is not automatically satisfied is the tangential become
velocity boundary condition (6), or, when it is expressed
in terms of the stream function (7), dvint

dt
5 L(vint) 1 L(H(vint , t)), (25)

­C

­r
(r, u) 5 2b(t)vy(r, u) r 5 ra 0 # u # 2f.

i.e., a closed system of ordinary differential equations for
the evolution of the interior vorticity. In the next sectionIf we approximate the derivative in this boundary condition
we will discuss our time stepping method for (25), butby a finite difference approximation, Dr , and employ the
before doing this we discuss how, for given values of vint ,operator G, we obtain the following condition on the vor-
the operator L(H(vint , t)) is evaluated.ticity which must be satisfied:

H(vint , t) represents the determination of the boundary
vorticity obtained as a solution of (24). To compute the(DrC

h)i,1 5 (Dr G[vint ])i,1 5 2b(t)vy(ra , ui ) right hand side of (24) we assume that b9(t) is known
so that the term involving that factor can be computedi 5 1 ... M. (21)
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explicitly. For the other term, we first observe that L(vint ) While each of the two parts of B are easily invertible using
the discrete Fourier Transform, there is no way to directlyare the values resulting from the application of the convec-

tion–diffusion difference operators to vint using homoge- invert their sum. However, this sum obviously suggests a
splitting for use with an iterative method [10]. We canneous boundary data and that the operator DrG represents

the computation of the tangential velocity induced by these write B 5 B1 1 B2 , where B1 5 C1 p D1 and B2 5 C2 p

D2 . This splitting is then used as a preconditioner to invertvalues. Thus, this term can be computed by applying the
difference operator to vint , solving a Poisson problem, and B. B is non-symmetric, so GMRES [21] is used as an itera-

tive method. We find convergence to be quite rapid. Thethen differentiating the result at the boundary points.
The operator on the left hand side of (24) is a linear number of iterations is usually no more than 10, and the

work per iteration is only O(M log M), so the total workoperator from the boundary points to themselves. Thus,
for any specific discretization the equation (24) can be to solve for the boundary vorticity is small compared to

the work spent in other parts of our procedure.represented by an m 3 m matrix equation, Bvint 5 f. First
consider the form of B when second order differencing is (The discretized version of the boundary vorticity opera-

tor H has a simpler form if the term for convection ofused in the interior. The operator L(vbdry) takes the
boundary vorticity values, scales them by a certain factor, vorticity is discretized in its conservative form = · (ug). In

this case the matrix B is circulant for both the second andand then projects these values into the interior of the
domain by moving them one mesh point in (to j 5 2 fourth order discretizations, and can be inverted directly

with the discrete Fourier transform.)points). The operator represented by DrG[ · ] computes
the tangential velocity which is induced by a given amount

3.5. Time-Stepping Strategyof vorticity in the interior. Thus, B is the matrix which
represents the computation of the tangential velocity The last item to be discussed is the choice of time-
induced by a given amount of boundary vorticity which differencing. We have discretized in space and are thus
has been scaled and placed one mesh point in the interior. confronted with the problem of solving a large system
Because of the symmetry inherent in the problem, the of coupled ordinary differential equations for the interior
tangential velocity induced by vorticity one point inside vorticity of the form
the domain is independent of its location along the
cylinder. For this reason, the matrix representing the
computation of the velocity from such vorticity is circu-

dvint

dt
5 L(vint ) 1 L(H(vint , t))

lant. The matrix B therefore takes the form B 5 C p

D, where C is circulant and D is diagonal. The inversion
When the fourth order time differencing is employed,of B is therefore a simple process. The equation Cx 5

the resulting time-stepping procedure isf is first solved using the discrete Fourier transform (in
a manner entirely analogous to the procedure described

K1 5 L(vn
int) 1 L(H(vn

int , t n ))in the appendix for the stream function computation)
and then vbdry 5 D21x. To carry out this process one

v(i)
int 5 vn

int 1
dt
2

K1must determine the first column of C—but this is just
the tangential velocity values induced by a unit value
of vorticity at the location i 5 1 and j 5 2. Furthermore,

K2 5 L(v(i)
int) 1 L SH Sv(i)

int , tn 1
dt
2DDthe matrix C does not vary with time, and so its construc-

tion need only be done at the start of the computation.
When fourth order difference stencils are used, the v(ii)

int 5 vn
int 1

dt
2

K2problem becomes slightly more complex. Because the
difference stencils are wider, boundary vorticity is con-
vected and diffused onto both the first and second rows K3 5 L(v(ii)

int ) 1 L SH Sv(ii)
int , tn 1

dt
2DDfrom the boundary. We can split our boundary operator

into two parts: one representing the slip generated by v(iii)
int 5 vn

int 1 dt K3
vorticity moved from the boundary to the first interior

K4 5 L(v(iii)
int ) 1 L(H(v(iii)

int , tn 1 dt))row, and one representing slip induced by vorticity moved
two rows in. Each part of the operator behaves in a
similar way to the second order operator and can be vn11

int 5 vn
int 1 dt FAhK1 1 AdK2 1 AdK3 1 AhK4G .

represented by a circulant matrix multiplied by a diagonal
matrix; that is,

For a given state v(p)
int and time tn 1 a dt the computation

of the terms of the form L(v(p)
int ) 1 L(H(v(p)

int , tn 1 a dt))B 5 C1 p D1 1 C2 p D2 . (26)
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for values gi, j at interior points and

ig iboundary 5 SO
i

g2
i,1 ra duD1/2

for values on the cylinder boundary.
For our discretization error estimates we used as a test

problem the results at Reynolds number 1000. This Reyn-
olds number was high enough so the flow structures present
were quite detailed, yet still low enough to allow for full
resolution on reasonably sized grids. For this Reynolds
number a grid of dimensions 256 radial points 3 1024
points around the cylinder was more than sufficient for
full resolution. An outer computational radius of 1.0, twice
that of the cylinder, was sufficient to capture the vorticity
field up to time t 5 1.5.

We considered three implementations of the method.
The most accurate uses fourth order approximations in
space for all of the operators. The second method uses the
simpler second order approximations. We also tested aFIG. 1. Contours of vorticity for Re 1000, t 5 0.75–1.5.
hybrid method, in which the stream function and velocity
fields, including the slip on the boundary, were computed
using fourth order operators while the convection and dif-
fusion operators were discretized to second order. We con-

is carried out in the manner described in the previous jectured that most of the errors in a complete second order
section. computation would be due to the inaccurate calculation

of vorticity boundary values. To test this conjecture we
4. ALGORITHM TESTING kept the convection and diffusion operators at second or-

der and computed the boundary vorticity using a fourth
Before presenting the details of the solutions obtained order accurate approach. All of the methods used a fourth

with our method we first discuss the results of accuracy order Runge–Kutta time discretization.
checks. In particular we were interested in determining Table I shows the relative errors at t 5 1.5 as the method
the rates of convergence of the computed quantities, the and grid size vary. The fourth order method does appear
effect which changing the outer radius of the computational to be worth the extra work. Relative errors of less than
domain had on the computed solution, and the effect of 1% are attained with a 64 3 256 grid, one size smaller than
using an impulsive versus a finite acceleration startup pro- is needed for the second order methods. The computation
cedure. times for the fourth order method were slightly higher than

An example of our results is presented in Fig. 1. In this
figure the contours of the vorticity at time 1.5 for Reynolds
number 1000 are shown. The presence of large vorticity

TABLE Igradients near and on the surface of the cylinder are clearly
seen. This aspect of the solution was presented in solutions L-2 Norm of the Relative Error of Vorticity for Re 1000 Flows
at higher Reynolds numbers, and we were therefore inter-

Error in Error inested in determining the accuracy of our vorticity on the
Scheme Grid size interior vorticity boundary vorticityboundary as well as in the interior. Since exact analytic

solutions to the Navier–Stokes equations of time depen- Fourth order 32 3 128 0.068 0.116
dent flow past a cylinder are not available, we used fully 64 3 256 0.0054 0.0093

128 3 512 0.00048 0.00039converged results obtained with the fourth order method
Second order 32 3 128 0.244 0.237as the ‘‘exact’’ solutions. The norms used to measure the

64 3 256 0.071 0.071computed quantities were discrete L2 norms:
128 3 512 0.019 0.019

Hybrid method 32 3 128 0.204 0.145
64 3 256 0.041 0.025

igiint 5 SO
i
O

j
g 2

i, j rj dr duD1/2

128 3 512 0.0099 0.0060
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TABLE II TABLE III

The Relative L-2 Norm of Difference between Flow CalculatedThe L-2 Norm of the Relative Error of the Stream Function
for Re 1000 Flows with Outer Radius 1.0 and Flow Calculated with Outer Radius 1.5

Time L-2 norm of difference Wake lengthScheme Grid size Error in stream function

Fourth order 32 3 128 0.015 0.50 1.0 3 1029 0.09
1.00 1.6 3 1026 0.2964 3 256 0.00086

128 3 512 0.00011 1.50 2.7 3 1024 0.47
Second order 32 3 128 0.063

64 3 256 0.017
128 3 512 0.0044

Hybrid method 32 3 128 0.059
boundary has a negligible influence on the computation64 3 256 0.011
until the wake length approaches the outer boundary. Even128 3 512 0.0028
as the wake approaches the edge of the computational
domain, errors are still small in magnitude, and they only
become large if a significant amount of vorticity is exited
from the domain.the second order method, but the difference is less than

20% of the run time. Many of the computations performed on a circular cylin-
der involve impulsively starting the cylinder in motion.The hybrid method also presents a significant improve-

ment over the second order method, especially for the The impulsive start process should have an effect on the
accuracy of the solution, but the precise nature of thevalues of boundary vorticity. The hybrid method could be

quite useful for flows in complicated domains or for three effect is unclear. To investigate this we performed a set of
computations in which we implemented an impulsive startdimensional flows—problems for which the construction

of fourth order convection and diffusion approximations calculation using three different procedures. Each of these
procedures converged to the same solution as the timeis difficult.

We also considered the relative errors of the calculated step was refined. The procedures differed in the rate at
which they converged to this solution.stream function. In general, at a given resolution, the errors

for the stream function were much smaller than the errors The first procedure involved solving the equations with
b(t) being a step function—that is, using b(t) 5 0 for t ,for the vorticity. This is to be expected since the stream

function is related to the vorticity via the inverse of the 0 and b(t) 5 1 for t $ 0. The resulting solution exhibited
only first order convergence in time despite the use of aLaplace operator. This operator is a smoothing operator—

i.e., the operator suppresses small scale features. Moreover, higher order time-stepping method. This is shown in Table
IV, in which the errors in time are examined by lookingwe can infer that if one estimates the accuracy of the

computation by the error in the stream function, then this at the relative error between solutions computed with time
steps of dt and an ‘‘exact’’ solution computed with anestimate is not a good estimate for the errors in the vortic-

ity. For example, with the second order method, a 64 3 excessively small time step. These differences decrease
linearly as dt decreases.256 grid is sufficient to obtain an error of less than 2% for

the stream function, while a 128 3 512 grid is necessary The failure to attain higher order convergence results
from the fact that higher order convergence is attainedfor the same level of accuracy for the vorticity.

The effect of the placement of the outer computational only if the vorticity field at the start of each step satisfies
the no-slip condition. This does not hold at t 5 0, and firstboundary was tested by computing two fully resolved flows

at Re 1000. The first of these calculations was performed order convergence results. This can be corrected in two
with the outer boundary at r 5 1.0, and the second with
the outer boundary at r 5 1.5. We calculated the difference
between the two flows by calculating the relative L-2 norm TABLE IV
of their difference. The Relative L-2 Error in Time as Time Step Varies for Impulsive

The length of the wake of a flow is defined as the furthest Start Calculation with No Initial Condition Modification
distance along the centerline behind the cylinder in which

dt L-2 norm of errorthe velocity is negative. It measures the size of the region
in which there is backflow, and can be used as a measure

0.004 2.44 3 1023
of how far away from the cylinder the underlying potential

0.002 1.22 3 1023

flow has been altered by the vorticity produced. As vortic- 0.001 6.09 3 1024

ity moves further away from the cylinder, the wake length
Note. The error is computed at time t 5 0.1.increases. Table III shows that the location of the outer



216 ANDERSON AND REIDER

TABLE V TABLE VII

Computational Parameters for Flow Past a CylinderL-2 Norm of Difference between Impulsively Started Flow
and Flow with Smooth Startup

Re nr nu dt Outer radius
Startup time L-2 norm of difference

1000 128 512 0.001 1.0
3000 192 1024 0.0005 0.8750.05 1.05 3 1021

9500 256 2048 0.00033 0.750.025 4.89 3 1022

0.0125 2.36 3 1022

0.00625 1.16 3 1022

Note. Differences are computed at time t 5 0.1.
5. NUMERICAL RESULTS

In this section we present the results of solutions for
flow past a cylinder of radius 0.5 over a range of Reynoldsways. One technique is to do a smooth startup where the
numbers. All of these flows are computed to full resolution.velocity varies continuously from zero at t 5 0 to unity at
Our solutions were computed using an impulsive start withsome startup time tst . Since the velocity at the initial time
a modified vorticity initial condition to preserve time accu-is zero, the no-slip condition is satisfied at startup, and
racy. Table VII presents the relevant numerical parametersfourth order convergence in time is attained. However,
for each of the runs. (For more detailed results and compu-the method only converges with first order accuracy with
tations at intermediate Reynolds numbers see [19].)respect to the length of the startup interval. Table V shows

In Figs. 2–4 we present plots of the contours of vorticity.that as tst is reduced to 0, (along with dt), the solutions
Negative contours are shown as solid lines while positiveconverge linearly to the impulsive start solutions.
contours are dashed lines. We will show only the contoursAnother approach is to prepare the initial data to satisfy
for the upper right quarter of the cylinder. By symmetrythe no-slip condition at startup. This consists of con-
the upper and lower halves of the plot will be identicalstructing a vorticity distribution in the fluid so that the
(except for a sign change). The front half of the cylindervelocity field at t 5 0 satisfies the no-slip condition. The
is not shown since there is little vorticity present and theparticular initial vorticity distribution we used was that
flow is quite uninteresting in that region. (There is a vortexwhich occurs when one performs one step of Euler’s
sheet near the surface, but there is no separation or othermethod with a step size «, and then considers the vorticity

in the limit as « R 0. As seen in Table VI, when this initial
condition is used, fourth order convergence in time results.

In our opinion, the procedure in which one modifies the
initial vorticity works best. It requires little extra work,
and does not destroy the time accuracy of the computed
solution. The technique can be useful in situations where
the prescribed velocity varies discontinuously over time.
When one encounters a discontinuity of the prescribed
velocity, one adds to the vorticity distribution an amount
of vorticity necessary so that the tangential velocity condi-
tion is satisfied at the beginning of the next time step.
There is no need to smooth out the transitions.

TABLE VI

The Relative L-2 Error in Time as Time Step Varies for
Impulsive Start Calculation with Initial Condition Modification

dt L-2 norm of error

0.004 2.5 3 1027

0.002 1.4 3 1028

0.001 9.0 3 10210

FIG. 2. Contours of vorticity for Re 1000, t 5 0.75–1.5.Note. The error is computed at time t 5 0.1.
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FIG. 5. Contours of stream function for Re 1000, t 5 0.75–1.5.FIG. 3. Contours of vorticity for Re 3000, t 5 0.75–1.5.

significant phenomena.) The stream function for these vorticity are shown in Fig. 10. The drag is computed by
cases is shown in Figs. 5–7. Graphs of boundary vorticity evaluating along the surface of the cylinder the integral
and surface pressure are given in Figs. 8 and 9. The time
development of the coefficient of drag and the maximum

D 5
1

Re
E2f

0
Sg 2

­g
­nD sin udu (27)

and the drag coefficient is then found using the relationship

Cd 5
D

2rU 2
y

. (28)

The pressure at a point along the cylinder is given by

P(u) 5
1

Re
ra Eu

0

­g
­n

df. (29)

As the Reynolds number increases, a number of trends
occur. The flows become more and more complicated—the
decrease in diffusion allowing smaller scale features to
remain. There is an increased variation in the surface pres-
sure and boundary vorticity as one moves along the back
of the cylinder. These quantities become more and more
oscillatory with increased Re. The wake size decreases and
the separation and the roll up of the main vortex occur
earlier in time as the Reynolds number increases.

Secondary structures occur at Re 1000 (Fig. 1). At t 5
1.5 we see that the counter-rotating flow at the rear of the

FIG. 4. Contours of vorticity for Re 9500, t 5 0.75–1.5. cylinder has separated significantly, being pushed up by a
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A similar time dependent behavior is seen when the
coefficient of drag is examined (Fig. 10) over our time
interval of computation. The coefficient of drag is very
large at the start of the computation and initially decreases
with time. For very low Reynolds numbers the drag coeffi-
cient continues to decrease as it rapidly tends towards a
constant. For higher Reynolds numbers, there is an initial
dip in the drag coefficient, followed by an increase that
again quickly approaches a constant. This behavior was
seen for Reynolds numbers in the range 300–3000. How-
ever, a much more complicated behavior is seen for Re
above 5000, and the drag coefficient varies greatly in time
during the early shedding process. Again, this appears to
be due to the formation of the strong secondary vortices
which occur as the first vortex is shed.

The rate at which the vortices form also increases with
Reynolds number. For Re 1000, by time t 5 1.5 the starting
vortex has just rolled up, while at Re 3000 the main vortex
is well formed at t 5 1.0, and by t 5 1.5 a second vortex
is well into the process of rolling up. The shedding process
for Re 9500 occurs even more rapidly. At t 5 1.25 the first
vortex is shed and the second vortex is fully rolled up

FIG. 6. Contours of stream function for Re 3000, t 5 0.75–1.5. behind it. By t 5 1.5 the second vortex is shed, and the
third vortex is beginning to roll up.

We present the stream function contours of our resultssecond mass of positive vorticity along the cylinder. At Re
3000 (Fig. 3) a cascade of vortices of opposite signs begins to facilitate comparison with other computations. How-

ever, as is clear from the figures, the complicated vortexto appear. This cascade forms when a mass vorticity of a
given sign close to the surface separates. The separation dynamics which are occurring in the boundary layer are

not reflected in the stream function.causes vorticity of the opposite sign to form beneath it.
These two vortices grow (being fed from the boundary
layer vorticity) and in time, the second vortex separates,
which induces the occurrence of a third vortex near the
surface. This process generates structures of smaller and
smaller scale near the surface. It appears that the only limit
to the formation of an arbitrary large number of structures
is the viscosity, which limits the size of structures which
can occur. At Re 3000, we see that this process occurs
about four times—i.e., we see the beginning of the develop-
ment of four vortices of opposite sign. Each of these events
is manifested as a change of sign of the boundary vorticity,
as illustrated in Fig. 8.

The occurrence of strong vortices near the cylinder sur-
face is reflected in the pressure and boundary vorticity. In
particular, as seen in Figs. 8 and 9, these vortical structures
induce large spatial fluctuations in the pressure and vortic-
ity. Moreover, they appear to be responsible for the unex-
pected time dependence of the maximum of vorticity. At
startup, a vortex sheet is formed, and the corresponding
vorticity is of large magnitude. As expected, as time ad-
vances, the maximum of vorticity decays quite rapidly. For
lower Reynolds numbers, the decay continues steadily as
shedding occurs. However, at higher Reynolds numbers,
the steady decay does not continue; this appears to be due

FIG. 7. Contours of stream function for Re 9500, t 5 0.75–1.5.to the strength of the secondary vortices that are formed.
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FIG. 8. Boundary vorticity along the cylinder surface. 08 is on the trailing side of the cylinder while 1808 is at the front.

6. DISCUSSION AND CONCLUSIONS scales as ÏRe (which can be inferred from the computation
or from a boundary layer analysis), one finds that this mesh

In this paper we have presented an explicit finite differ- width is consistent with the scale estimates of Kreiss et al.
ence method for computing the time-dependent solution which can be stated as
of an impulsively started cylinder in two dimensions. We
have reported the results obtained from this code at Reyn-
olds numbers 1000, 3000, and 9500. These results have D P

maxug u
ÏRe

.
been obtained by solving the Navier–Stokes equations with
boundary conditions appropriate for a circular cylinder in
an infinite domain. The solutions presented are the results The estimates in [11] are derived for periodic flows, but

their agreement with our computational results indicatesof fully resolved computations.
Our solutions clearly indicate that for this problem, that they may hold more generally. The smallest necessary

mesh width we have found is based on our computationswhere boundary layer separation is present, one must have
nearly equal resolution in both the direction normal and using the vorticity formulation of the Navier–Stokes equa-

tions. By looking at the scale of the structures which occurtangential to the cylinder. From Table VII we estimate
that the mesh width, D, necessary to resolve the flow is on in the solutions, it is clear that our estimate is a reasonable

one. However, the velocity field associated with our solu-the order of 1/Re. Since the magnitude of the vorticity
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FIG. 9. Surface pressure on the cylinder. 08 is on the trailing side of the cylinder while 1808 is at the front.

tions is much smoother than the vorticity distribution, and By choosing different approximations we were able to
construct a second order method, a fourth order methodso a question remains as to whether or not our reported

minimal mesh size is also the minimal mesh size needed and a hybrid second/fourth order method. We found that
in terms of computational efficiency using a fourth orderfor a computation done using the velocity/pressure formu-

lation. approach was justified. The computational time necessary
for the fourth order method was only about 20% moreWe were also interested in understanding the effect of

using an impulsive start on the computation. The primary than that for the second order method. If one does not
want to go to the trouble of implementing a fully fourthresult is that the numerical method using an impulsive start

converges to a single solution as the time-step tends to order method, then one can obtain substantial improve-
ments using a hybrid method where only the stream func-zero, but that the rate of convergence to the solution is

only first order in time—rather than fourth order accuracy, tion and the vorticity boundary conditions are computed
using fourth order approximations.which might be expected from the use of a fourth order

Runge–Kutta time-stepping method. We demonstrated The numerical approach presented here differs from
other finite difference implementations primarily in ourthat the loss of accuracy could be circumvented by using

a smooth startup procedure or by using suitably modified use of ‘‘infinite’’ boundary conditions for the stream func-
tion and our particular method for satisfying vorticityinitial conditions.
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FIG. 10. Time evolution of drag coefficient and maximum value of vorticity.

boundary conditions. In both instances our procedures can this approach by Reider [19]. (Conformal mapping was
used.) The direct application of our procedures for generalbe seen to result from a desire to have methods which give

solutions which respect the mathematical properties of the geometries is also under investigation, as well as the exten-
sion of these procedures to three dimensional computa-solution to the Navier–Stokes equations. Specifically, the

stream function used on the computational domain should tions.
be the restriction of the stream function associated with
the solution of Laplace’s equation on the infinite domain.
The procedure we use provides either a second order or APPENDIX: THE TREATMENT OF
fourth order approximation to a stream function with this THE INFINITE DOMAIN
property. Furthermore, the vorticity of the computed solu-

In this appendix we fully describe the steps necessarytion should evolve in such a way that the velocity boundary
to solve for a stream function that satisfies the appropriateconditions are satisfied. Our vorticity boundary conditions
boundary conditions at infinity.ensure that this constraint is satisfied up to the accuracy

The stream function satisfies the equationof the time-stepping method used. The fact that our compu-
tation is for a circular cylinder allows us to create efficient
implementations of these techniques. Solutions for flows DC 5

1
r

­

­r Sr
­C

­r D1
1
r2

­2C

­u2 5 2g (30)
about more general geometries have been obtained using
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with boundary conditions on the order of the discrete Laplacian used in the approxi-
mation of (33)).

In our approach we express the derivative of Cg in theC(r, u) 5 0 r 5 ra ; C(r, u) 5 Cy(r, u) r R y
(31) second equation, (36), as Dr(Cg )g

i,N11 1 Dr(Cg )c
i,N11 . (Cg )g

0 # u # 2f. is that component of Cg defined as the solution of (33)
with data g in the interior and homogeneous boundary

We seek an approximation of C as a composition of func- values. (Cg )c is the component of Cg defined as the solution
tions with the form of (33) with homogeneous data in the interior and bound-

ary conditions Cc
g 5 0 at r 5 ra and Cc

g 5 c at r 5 rb. Thus
Eq. (36) becomes

C P5(Cg )i, j 0 # ui # 2f ra # rj # rb

Cf (r, u) 1 CH (r, u) 0 # u # 2f r $ rb .
(32)

Dr(Cg )g
i,N11 1 Dr(Cg )c

i,N11 5
­Cf

­r
(ui , rb) 1

­CH

­r
(ui , rb)

(37)
Here (Cg )i, j is the solution of the discrete Poisson equation i 5 1 ... m.

(DhCg )i, j 5 gi, j
(33)

The substitution of the values ci 5 Cg(ui , rb) and di 5
Cf (ui , rb) into (35) yields the equationsCg(ui , ra ) 50 Cg(ui , rb ) 5c(ui )

ci 5 di 1 CH (ui , rb) i 5 1 ... m. (38)
in the annulus ra # rj # rb . CH (r, u) is a specified harmonic
function taking the prescribed boundary conditions at in-

By definition Cc
g and Cf are solutions of Laplace’s equa-finity (including a prescribed amount of net circulation).

tions with boundary data c and d at r 5 rb, so Eq. (37)The function Cf is a finite Fourier series solution to La-
provides a set of equations involving the boundary dataplace’s equation in the region r $ rb with boundary data
which we express asd(ui ),

(Bgc)i 5 (Bf d)i 1
­CH

­r
(ui , rg) 2 Dr(Cg )g

i,N11

(39)
Cf (r, u) 5 Ok5M/2

k52M/211
S r

ra
D2uku

ak eiku, (34)

i 5 1 ... m.

with the coefficients ak chosen so that Cf (rb, ui ) 5 d(ui ),
In this equation Bg is a matrix which gives the discretei 5 1 ... M.
normal derivative associated with a solution of (33) withWith these definitions of Cg , Cf , and CH the solution
g ; 0 and data c at r 5 rb. Bf is that matrix which givesC will be a discrete approximation to the solution of (30)
the normal derivative of a finite Fourier series (34) whichin the annulus ra # rj , rb and will be an analytic solution
has the values d at r 5 rb.to (30) in the region r . rb . The values at r 5 rb, c and d

In block matrix form the equations for the unknownwhich are necessary to determine Cg and Cf are still un-
values c and d can be expressed asknown. One obtains equations for these values by requiring

that the composite solution (32) be continuous and have
a continuous normal derivative across the interface r 5 rb. 1 I 2I

Bg 2Bf21c

d25 1 CH

­CH /­r 2 Dr(Cg )g2 . (40)(The satisfaction of these conditions is necessary for the
composite solution to be an accurate approximation at
r 5 rb.)

Here we are using CH and ­CH /­r to denote the valuesWe employ the technique of collocation at the grid
of CH and its normal derivative at the grid points withpoints with r 5 rb and obtain a set of discrete equations
r 5 rb.of the form

The solution procedure we employ is one using block
Gaussian elimination (or forming the Schur complement)(Cg )i,N11 5 Cf (ui , rb) 1 CH (ui , rb) i 5 1 ... m (35)
on the system (40). The matrix equation which results from
the Gaussian elimination process is a circulant matrix (i.e.,Dr(Cg )i,N11 5

­Cf

­r
(ui , rb) 1

­CH

­r
(ui , rb) i 5 1 ... m (36)

it represents a discrete convolution) and we employ the
discrete fast Fourier transforms to compute its solution
[19]. One aspect of using the fast Fourier transform towith Dr being either a second or fourth order one sided

approximation to the radial derivative. (The order depends compute solutions of circulant systems is that the matrix
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need not be formed—all one needs is the first column of by (43) does not depend on the data g and so need only
be computed once for any particular computation.the matrix. Thus, while the system we must solve is com-

posed of dense matrices, these need not be explicitly con- Thus, our solution for Laplace’s equation in the infinite
domain is obtained by using an approximation consistingstructed to obtain solutions. (If one applies this procedure

to obtain solutions with infinite boundary conditions on of the composition of a finite difference solution in an
annulus about the cylinder and an analytic (Fourier series)regions whose interface is not a circle, then the matrices

which arise will no longer be circulant. However, one ap- solution outside the annulus. In order for this composite
solution to be a solution of Laplace’s equation we requireproach to solving such systems would be to use an iterative

method and the solution procedure presented here for a that it be continuous and have continuous normal deriva-
tive at r 5 rb. These latter conditions give rise to a set ofcircle as a pre-conditioner.)

The first step towards solving (40) consists of multiplying linear equations (40) which determine the boundary data
for the finite difference and the Fourier series solution atthe equation by the matrix
r 5 rb . The solution of this system of equations can be
reduced to solving a circulant system of equations (42)—a
system which can be efficiently solved using discrete Fou-1 I

2Bg I2 .
rier transforms. To carry out this solution procedure re-
quires a few discrete Fourier transforms and two solutions
of a discrete Poisson equation on the annulus. The latterThis results in the system of equations
can be accomplished using fast Poisson solvers.
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